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Amorphous & high x SiNx: 

High CE and stability over 200 cycles

High T sample is 

more crystalline 

affecting its stability 

Gas and water cooling options for the nozzle

▪ Gas cooling leaves the nozzle hot enough 

for reaction (1) to initiate within the nozzle 

▪ Water cooling curbs the early onset of (1) 

in the nozzle, exposing more SiH4 to NH3 

Stability issues compromise the practical application of silicon 

as Li-ion battery anode material

Conversion type silicon rich silicon nitride (SiNx) as highly 

promising alternative to pure silicon with numerous advantages

▪ Conversion type material forms electrochemically active buffer 

matrix mitigating structural degradation[2]

▪ Trades off between cyclic stability, high Coulombic efficiency (CE) 

and storage capacity

▪ Tunable properties of SiNx by adjusting the nitrogen content (x)

Synthesis: Hot-wall reactor 2Motivation 1

XRD analysis 3

Conclusions 6

Atharva H. Ladole1, Moritz Loewenich1, Melisa Bilgili1, Hartmut Wiggers1,2

1Institut für Energie und Material-Prozesse – Reaktive Fluide, Universität Duisburg-Essen, Germany
2CENIDE – Center for Nanointegration Duisburg-Essen, Germany

atharva.ladole@uni-due.de

Gas phase synthesis of SiNx

nanoparticles for battery application 

using a hot-wall reactor

Si

(1)   SiH4   → SiH2  +  H2 → Si +2H2

(2)    SiH4 +  x NH3 → SiNx (0 < x < 1.33)        +  (2 + 1.5x) H2

SiNx

(3)     Si   +   x NH3 →  SiNx +   1.5x H2

Half-cell testing in liquid electrolyte 4

[1]

[3]

Gas phase Synthesis of SiNx from SiH4 and NH3

▪ Three thermodynamically favorable reactions

▪ Reaction (2) is preferred over (3) at high temperatures 

▪ Decomposition of NH3 is slower than SiH4 and 

nucleation of Si (slower than reaction (1))  

▪ Nitrogen rich SiNx requires NH3 excess & long 

residence time

→ process design required to tune materials 

properties
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Nozzle:

P = 980 mbar

t = 2.5 s

SiH4 = 10%

NH3 = 55.5%

▪ Higher x can be seen in water 

cooled case for same temperature

TEM analysis

Premature reaction (1) in a gas-

cooled nozzle results in core-shell 

morphology; water cooled nozzle 

hampers premature reaction (1) 

▪ Homogenous 

amorphous 

SiNx particles 

obtained

Water Cooled

▪ Crystalline 

Si core

Gas Cooled

▪ Amorphous 

SiNx edge 

▪ Particle composition, size and morphology can be adjusted to 

use cases in a scaled up synthesis of upto 1 kg per hour

▪ SiNx: High stability, CE, and rate performance can be achieved for 

slightly less capacity compared to pure silicon

▪ Performance of material in solid state cells is comparable to the 

liquid electrolyte cells

▪ Even high x cells (SiN0.84) retains a capacity of 1000 mAhg-1 with 

CE > 99.5%  and over 200 cycles in a liquid electrolyte cell.

▪ The c-Li15Si4 phase which 

irreversibly reacts with the 

electrolytes and is detrimental to the 

Coulombic efficiency, is suppressed

with higher x

▪ Buffer matrix formed  from SiNx

composed of various lithium 

nitridosilicates and Li3N, allows for a 

multi-phase lithiation

The work is funded by 

the BMBF under the 

project “FB2-SiSuFest” 

(reference number: 

03XP0593A-D) as part 

of the FestBatt cluster. 
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Equation
y = a + b*x

Slope
0.49173 ± 

0.0213

Intercept
10.94283 ±

 1.10116

R-Square
 (COD)

0.98886
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→ Nearly linear 

relationship
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Liquid electrolyte cells: Gas vs water cooled nozzle  

Liquid electrolyte cells: Varying particle size

Liquid electrolyte cells: Varying nitrogen content

Solid state cells: 0.1C long term cycling
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▪ Resistance decreasing

with size
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Reduced capacity for bigger particles

x ≈ 0.66 

Improved stability in 

larger particles

▪ Capacity fade with rising x due to less silicon in material

▪ High x also has less initial CE due to matrix phase formation

▪ Stability is rising with x

▪ Optimum composition around x = 0.6 to 0.8

Decreasing initial CE for large x

Schematic of the 

solid state cell

LinkedIn

Solid state battery tests performed by Federico Rossi, Institute for 

Physical Chemistry, Justus Liebig University Giessen, Giessen 35392, 

Germany. 

Half-cell testing in solid electrolyte 4Acknowledgements 7

▪ High T, and midpoint sample shows crystalline phases of Si and 

Si3N4

▪ Crystalline peaks not prominent in high T water cooled sample 

▪ No crystallinity at all for compositions with x > 0.15

▪ Decreasing crystallinity with increasing concentration of NH3

5

▪ Lithiation of core is difficult in larger 

particles decreasing their specific

capacity


