Dry electrode processing of **NFM layered oxide cathodes** and evaluation in pouch cells

J. Kühn^{1,2}, F. Schmidt¹, T. Boenke¹, F. Hoffmann¹, A. Dupuy¹, B. Schumm¹, H. Althues¹, T. Abendroth^{1*}, S. Kaskel^{1,2}

¹ Fraunhofer Institute for Material and Beam Technology, Division Battery Technology, Winterbergstraße 28, 01277 Dresden, Germany ² Chair of Inorganic Chemistry I, Technical University Dresden, Bergstraße 66, 01069 Dresden, Germany

*Contact: thomas.abendroth@iws.fraunhofer.de, website: http://www.iws.fraunhofer.de

Motivation

- Iimited resource availability and rising material costs are drivers to search for alternative materials and chemistries for secondary batteries
- Sodium-ion battery (SIB) is a promising cell chemistry due to
 - high abundance of Na
 - "drop-in" to LIB technologies
- besides the material driven costs, also costs for processing need to be further reduced
- common slurry coating process for LIB (and SIB) cathode materials
 - usage of toxic substances (e.g. N-Methyl-2-pyrrolidone NMP)
 - high energy and space requirements of the drying process
 - solvent recovery necessary
- Dry transfer electrode coating DRYtraec®
 - Proprietary solvent-free electrode coating process
 - Reduced process costs + low equipment footprint
 - Applicable to LIB and next generation batteries

ate of the art wet coating and drying line in LIB production

intensity (a.u)

1.5V - 5mV

HC Shurr

7.4 mg/cm³ 2.4 mAh/cm³

Half-cell (3-electrode)

determination of the specific capacities and voltage curves in half-cells for balancing and voltage limits of the full-cells

Full-cell characterization

- comparable performance of dry-processed to wet-processed cathode
- influence of electrode loading on rate capability

- at full cell level more then 400 cycles (CE=99.88 %) were demonstrated with a capacity decay of 26% or 23% depending on cathode areal loading.
- a rate capability of up to 2C was achieved

Conclusion

- Demonstration of NFM dry cathode production with loadings in the range of