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Introduction

Figure 1: Photo of the presented system for advanced ther-

mal control and analysis of cylindrical Li-ion battery cells.

Temperature is a crucial parameter
of Li-ion cells regarding performance,
lifetime and safety, especially for high
energy cells of electric vehicles (EV).
For battery cell tests, thermal bound-
ary conditions are usually provided by
a temperature chamber. Thus, achiev-
ing thermal cell equilibrium is time-
consuming, cell heat generation is not
measured, and thermal boundary con-
ditions differ from those of an actual
battery module of an EV.
In this poster, a high-power combined
electrical and thermal cell test sys-
tem is presented, enabling heat flow
measurements, high-speed tempera-
ture variation and simulation.
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Figure 2: System structure block diagram.

Figure 3: Photo of one 60° thermal

contact module with two TSMUs

(vertical distribution).

The measurement system consists of 12 independent
thermal source-measurement units (TSMU), each in-
cluding a thermally conductive aluminum element, a
thermoelectric cooling device with two precision tem-
perature sensors. The heat flow through each element
is calculated according its temperature differential. The
conductive approach achieves fast response time.
Various thermal settings are available for cell testing:

• Isothermal (constant temperature, Δ𝑇 < 1 mK)
• Adiabatic (thermal isolation)
• Finite thermal impedance (real time control)
• Complex cooling system behavior (real time control)

A precision electric cycling system provides electric cell
stimulation [1]. Spring-loaded high-current contacts are
used for fast cell switching. Contact losses are compen-
sated for to enhance heat flow measurement accuracy.

Test Procedures
The system is suited for a wide variety of experiments in different stages of cell
development. The following examples are presented in this work:

• Entropy coefficient analysis: Measurement of the cell entropy coefficient
based on potentiostatic and calorimetric procedures.

• Battery module evaluation: Thermal response of a cell to heavy-duty driving
cycles and fast charging profiles for realistic thermal boundary conditions of
a battery module cooling system.

Entropy Coefficient Analysis
The entropy coefficient of Li-ion cells describes the impact of the
charge/discharge reactions on the cell heat generation. It can be measured
by calorimetric and potentiostatic procedures [2]. The presented system is
capable of both concepts at reduced measurement duration compared to state
of the art systems due to its fast response time.
Figure 4 presents a novel multi-rate-constant-current calorimetric procedure, by
which the entropy coefficient is evaluated dependent on state-of-charge (SoC).
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Figure 4: Calorimetric entropy coefficient determination based on multi-rate-constant-current cycles.

Battery Module Evaluation
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Figure 5: Driving cycle measurement.

The cooling system of an EV must provide suffi-
cient thermal budget to safely handle high current
load profiles. Figure 5 shows the measurement
data of a heavy-duty driving cycle for three dif-
ferent cooling systems:

• Isothermal (35 °C)
• Single-sided cooling system
• Double-sided cooling system

The test system allows for designing battery pack
cooling strategies by single-cell tests.
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Figure 6: Fast charging measurement.

Fast charging performance is particularly depen-
dent on temperature. Especially using a single-
sided cooling system, thermal inhomogeneity
must be considered to avoid local overheating and
increased lithium plating in cold regions [3].
Figure 6 displays the thermal response to a
20-minute fast charging profile. The test sys-
tem measures the inhomogeneous cell surface
temperature distribution to identify hot and cold
spots. Charging profiles can be modified accord-
ingly for enhanced life time and safety.

Conclusions
The presented system allows for fast and accurate temperature and heat flow
measurement and control for cylindrical Li-ion cells. It can easily be adapted for
alternative cell geometries due to its modular structure.
The system is suitable for a wide range of applications, including thermal cell
modeling, calorimetry, electrochemical entropy analysis, and complex cooling
system simulation with real-time control. It enhances all stages of battery cell
and pack development by enabling accelerated and reproducible test procedures
at high accuracy.
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