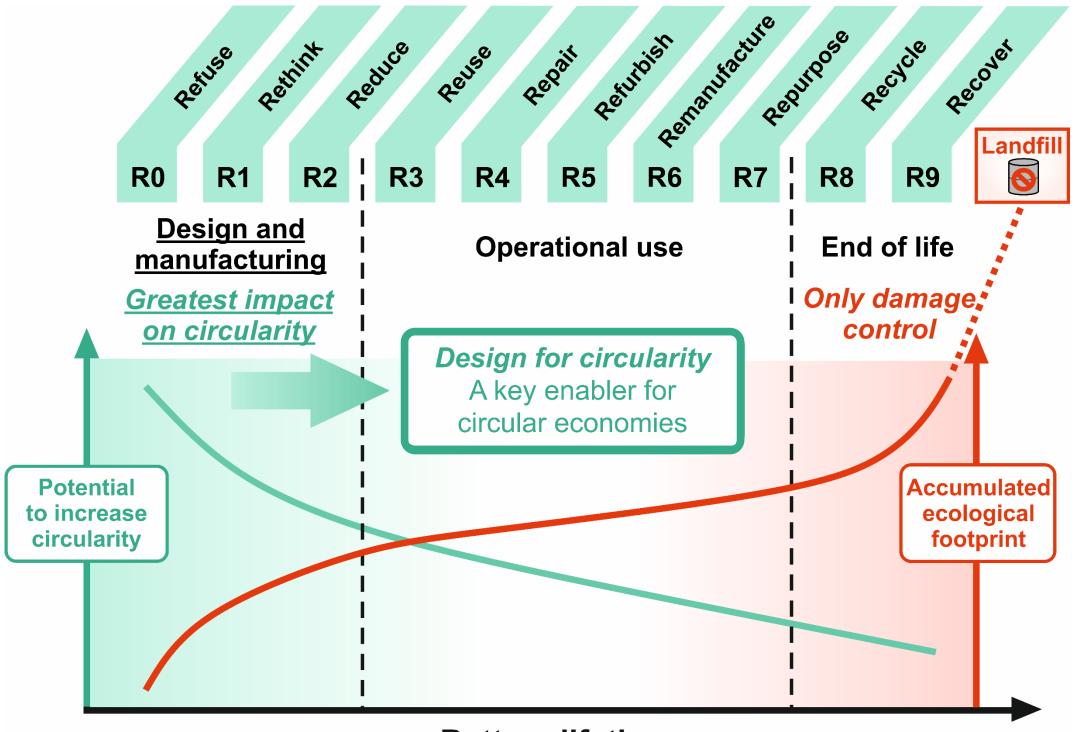
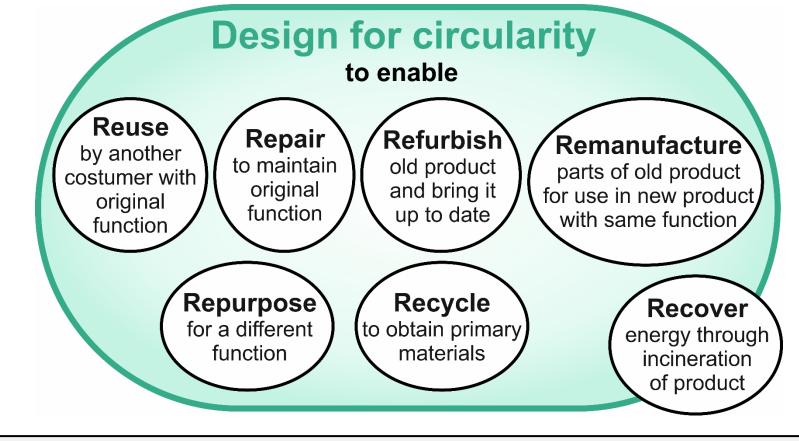
Circular Battery Design: Investing in Sustainability and Profitability

Fraunhofer Institute for Silicate Research ISC

Andreas Wolf^{1,2}, Felix Nagler¹, Philipp Daubinger¹, Karl Mandel^{1,2}, Andreas Flegler¹, Guinevere A. Giffin^{1,3}


¹ Fraunhofer R&D Center for Electromobility Bavaria, Fraunhofer Institute for Silicate Research ISC, Wuerzburg, Germany

- ² Friedrich-Alexander-Universität Erlangen-Nuernberg (FAU), Professorship for Inorgnic Chemistry, The Supraparticle Group, Erlangen, Germany
- ³ Julius-Maximilians-Universität Wuerzburg (JMU), Chair of Chemical Technology of Materials Synthesis, Wuerzburg, Germany


INTRODUCTION

Sustainability is a much talked about goal in battery production but currently comes third in importance to cost and performance. Historically, improved sustainability comes with a penalty in terms of cost and performance. This interplay will certainly evolve in the coming years. Ecological and social aspects driven by legislative frameworks guarantee recycling of lithium-ion batteries (LIBs) to prevent hazardous waste in landfills. The trend in the electric vehicle (EV) sector towards low-cost chemistries like lithium iron phosphate (LFP) represents a double-edged sword, as the recycling profitability of such materials is extremely low for the established recycling methods.^{1,2} The direct recycling approach, where anode and cathode materials maintain their structure and functionality, holds the potential to make recycling profitable also for low-cost chemistries.^{3,4} However, direct recycling, which faces major processing challenges, necessitates a shift in LIB design priorities. This work highlights **design for circularity** as an enabler for direct recycling and a key tipping element for reducing cost and increasing sustainability in LIB production and disposal concurrently.

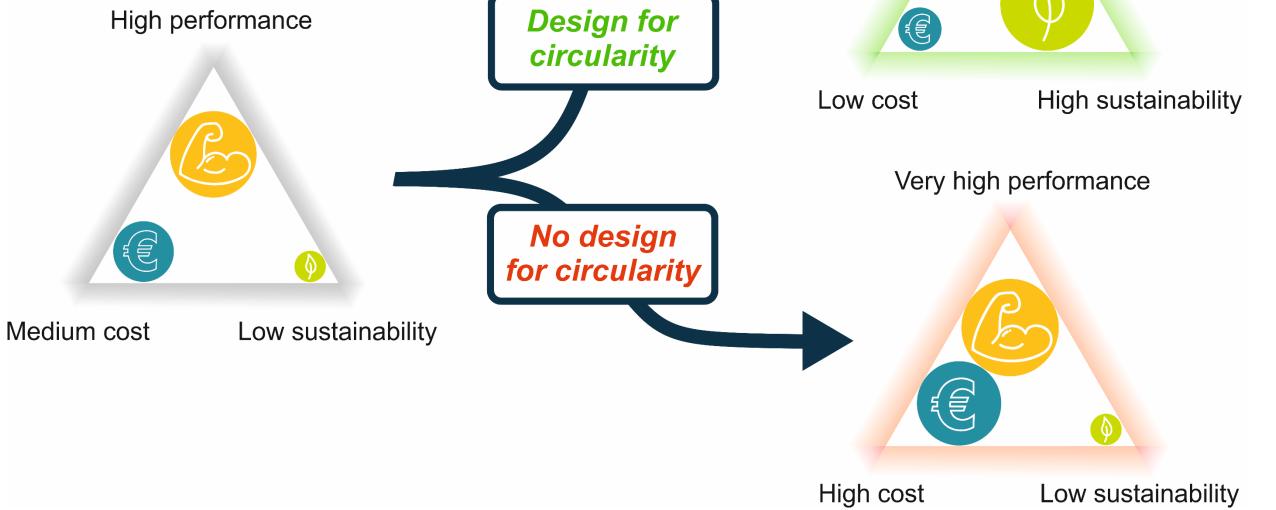
THE MEANING AND POSSIBLE IMPACT OF DESIGN FOR CIRCULARITY

Battery lifetime

- The R9 framework for circular economies provides ten (R0 R9) strategies to increase the circularity of a product (here, batteries).⁵
- R8 (Recycle) and R9 (Recover) are necessary to avoid hazardous waste, but have less impact on circularity than earlier implemented R-strategies (R0 – R7)
- It is the design and manufacturing phase of a battery (R0 R2), which determines how effectively further R-strategies (R3 – R9) can be implemented.
- The consideration of recycling after the market launch of a battery, which has been optimized only with regard to cost and performance, contradicts the concept of circular economies to a large extent and is seen as "only damage control".

THE CHANGING INTERPLAY BETWEEN COST, PERFORMANCE AND SUSTAINABILITY

- Regulatory frameworks demand ambitious recycling rates and will cause increasing costs resulting from battery disposal.
- A continuing focus only on optimizing cost and performance will lead to higher disposal costs and less profitable recycling.
- Direct recycling, including the implementation of R-strategies during operational life (R3-R7), lowers the dependency towards raw material processing and thereby leads to a strengthened European LIB ecosystem, especially for low-cost chemistries.
- Design for circularity is the key enabler to increase sustainability and lower costs in the long term



High performance

CONCLUSION

- Regulatory frameworks are required to overcome some of the facets of linear economies, in which generation of waste is tolerated, since sustainability places third, far behind cost and performance.
- Only by implementing *design for circularity* strategies can the recycling of low-cost chemistry batteries (LFP and sodium ion batteries) turned into a profitable endeavor.
- All stakeholders along the value chain have to elaborate battery design standards
- The battery sector could be a role-model for other industries to gradually from a linear to a (more) circular economy

Federal Ministry of Education and Research

Acknowledgements The German Federal Ministry for Education and Research (BMBF) is acknowledged for funding the projects IDcycLIB (Grant No. 03XP0303C), HydroLIBRec (Grant No. 03XP0339A) and AdRecBat (Grant No. 03XP0518B).

References

- [1] Mao, J. et al. *Energy Environ. Sci.* 15, 2732–2752, (2022)
- [2] Ciez, R. E. & Whitacre, J. F. Nat. Sustain. 2, 148–156, (2019)
- [3] Amici, J. et al. Adv. Energy Mater. 12, (2022)
- [4] Lander, L. et al. *iScience* 24, 102787, (2021)
- [5] Kirchherr, J. et al. *Resources, Conservation*) and *Recycling* 127, 221–232, (2017)

andreas.wolf2@isc.fraunhofer.de Dr. Guinevere A. Giffin guinevere.giffin@isc.fraunhofer.de Tel +49 931 4100 959

Andreas Wolf